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This paper considers steady, slowly varying water waves propagating over a gently 
sloping bed on a steady current. The current varies linearly with depth, and so has 
constant vorticity Q. The analysis is two-dimensional and dissipation is neglected. 
Definitions, and expressions correct to second order in the amplitude, are given for 
the radiation stress, wave energy density E and total energy flux. An average La- 
grangian p, obtained by heuristic arguments from Clebsch potentials, leads to the 
result that for this particular problem E equals the wave action P,, times the angular 
frequency w,, relative to a frame of reference moving with the average-over-depth 
current velocity U,. This determines the variation of the amplitude with distance 
explicitly. An analytical expression for the height of the mean water surface is found 
by a heuristic argument which compares the conservation equations for total energy 
and wave action. All the results have been checked directly by substitution back into 
t,he basic equations. Graphs illustrate the effect of the vorticity 52 on the wavelength, 
amplitude and set-down. 

1. Introduction 
This study concerns t,he propagation of surface gravity waves on a shear current 

over a slowly varying bed. It is restricted to two-dimensional flow without dissipation. 
Waves on a rotational current have not been studied very extensively so far. 

Thompson (1949) introduced the idea of modelling a real current profile by a number 
of straight lines. He also showed how the dispersion relation may be found from the 
kinematic surface condition, a result which was found independently by Biesel(1950). 
Abdullah (1949) found the dispersion relation for waves on a current varying expo- 
nentially with depth. In a classical paper Burns (1953) studied long waves on an 
arbitrary current and found a simple integral expression for the dispersion relation. 
In  an appendix to Burns’ paper Lighthill discussed the critical Froude number above 
which no upstream propagation is possible. Results (including the effect of surface 
tension) were presented for a 4 power law for the velocity distribution with depth. 
A more general discussion (abandoning the long-wave theory) of the influence of this 
current profile on the wavelength was given by Hunt (1  955). Taylor (1  955) studied 
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two special bilinear profiles describing a surface current acting as a hydraulic break- 
water in deep water, and Brevik (1976) extended this work to include finite depths. 
Sun’ Tsao (1959) found expressions for the surface displacement and particle velocities 
in waves on a one-line current profile (allowing an amplitude-dependent mass flux; 
see below). Dalrymple (1973) presented the dispersion relation and the stream function 
for linear waves on an arbitrary bilinear current profile, and developed numerical 
procedures for the calculation of the surface elevation and velocity distribution for 
higher-order waves on linear and bilinear profiles and for waves on arbitrary currents. 
Dalrymple & Cox (1976) assumed that the vorticity varied linearly with the stream 
function and computed results showing the influence of the vorticity on the horizontal 
velocity profiles, wavelength and crest elevation. Fredsare (1974) used a cosine velocity 
profile in his investigation of stationary waves. 

The above-mentioned papers are based on very similar assumptions and a survey 
can be obtained from Fenton (1973). 

Experiments studying current-wave interaction are rare. Yu (1952) and Sarpkaya 
(1955, 1957) were among the first to perform flume experiments of this type. 

The aim of our study is to calculate the variations in the wave amplitude, the 
wavelength, the position of the mean water surface and the current velocity with 
depth when the mean volume flux q and the absolute wave frequency o are both con- 
stant. Results are presented for a one-line (‘linear’) current profile, which is a good 
approximation to several flows important in coastal engineering practice. 

It is assumed that the parameters which characterize the current-wave motion 
are constant in time. We shall further introduce a key assumption stating that, below 
the wave trough level, all contributions to the Eulerian-mean flow of second order 
in the wave amplitude are independent of depth (figure 6). This is appropriate to the 
phenomena in shoaling water which motivate this study. 

New results include analytical expressions for the wave amplitude, the position of 
the mean water surface, the radiation stress S, the wave energy density E and the 
total mean energy flux P. The pioneering work of Longuet-Higgins & Stewart (1960, 
1961, 1962, 1964) dealt with the corresponding expressions for irrotational flow. We 
shall see that our definitions of S and E are natural ones for problems where the above 
key assumption is appropriate; when they are introduced into the expression for the 
energy flux this takes exactly the same form as for irrotational flow. More surprising, 
perhaps, is the extremely simple connexion between E and Whitham’s adiabatic 
invariant 9u as detailed below. 

A special average Lagrangian 9 plays an important role in this study. This concept 
and some of its applications were presented in a series of papers by Whitham, beginning 
in 1965; see Whitham (1974). 

Bretherton & Garrett (1968) showed that for linear waves and irrotational flow 
the wave energy, calculated in the frame of reference moving with the local basic 
flow, which is depth-independent in their case, could be interpreted as Whitham’s 
adiabatic invariant times the intrinsic frequency, defined as the frequency relative 
to the same moving frame of reference. In our study a Lagrangian 9 for rotational 
flow is constructed and a non-trivial extension of the result for irrotational flow is 
found, namely that E simply equals YW times the intrinsic frequency, where ‘intrinsic ’ 
means ‘relative to the special frame of reference Sm in which the average-over-depth 
velocity is brought to zero’. The uniqueness of Fm is further accentuated by the 
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disappearance of the interaction term (containing the radiation stress) in the expression 
for the total energy flux with the mean water surface as the reference level, calculated 
in this special frame; see 5 2. 

Further studies on wave-action conservation for linear solutions in slowly varying 
wave guides were presented by Bretherton (1968)’ together with the first justification 
of Whitham’s method in terms of formal asymptotic expansions. An interesting 
generalization of Whitham’s adiabatic conservation law is given by Hayes (1970). 
He also includes an example somewhat similar to our problem, viz. non-dissipative 
wave propagation in an acoustic duct, in the presence of a basic flow whose velocity 
is a function of position in the cross-section. However, his integrated action density 
d is not generally ‘interpretable as intrinsic energy density divided by intrinsic 
frequency’ (Hayes 1970, p. 198). According to Bretherton (1978) and McIntyre (1977)’ 
Hayes’ work also demonstrates a close connexion between wave-action conservation 
and the classical conservation laws for the ‘energy-momentum tensor’ (Landau & 
Lifshitz 1975). 

The results discussed in the following sections contain three well-known special 
cases. 

(i) For a pure current some trivial results emerge on putting a = 0, a being the wave 
amplitude, such as the expression for the height of the mean water surface, etc. 

(ii) Stokes’ second-order wave theory is obtained by putting 0 = 0 and Urn = 0, 
!2 being the vorticity of the current profile and Urn being the average-over-depth 
velocity (which vanishes in the frame Sm). 

(iii) The theory of the irrotational combination of waves and a current over a slowly 
varying bed emerges by putting !2 = 0. Jonsson, Skougaard & Wang (1971) solved 
this problem analytically and presented graphs showing the variation of the wave- 
length and height with water depth. 

Jonsson (1978) discusses the extension to two horizontal dimensions for irrota- 
tional flow. Other topics which are not of direct interest here are described in surveys 
by Peregrine (1976) and Jonsson (1977). 

An Eulerian description of the fluid motion is used throughout the present paper. 

2. Radiation stress, wave energy density and total energy flux 
It is convenient to define a ‘formal current velocity profile’ 

U(2) = us+ Qz, 

which is the current profile that would exist in the absence of waves for a constant 
mean water depth. This is shown in figure 1 .  The vorticity Q is a given constant 
(shown positive in the figure). U, is a formal surface velocity which is related by 
definition to the mean volume flux q and the mean water depth h by 

q = Us h - 4!2h2. ( 1 )  

We shall specify that q is exactly constant. A discussion of the relationship between 
the formal current profile and the real Eulerian-mean current profile is given in the 
appendix. 

By the use of a regular perturbation technique with the wave steepness as indicator 
of smallness (analogous to Stokes’ wave theory) a solution to arbitrary order can be 

14-2 
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U ( 2 ) = U s + Q 2  

FIGURE 1. Definition sketch. Horizontal bed. 

found for wave propagation on this shear flow. The problem is to solve the local 
niomentum and mass conservation equations using the kinematic bottom and surface 
conditions, as well as the dynamic surface condition, and demanding a periodic 
solution. This problem was formulated by Sun' Tsao (1959)) who found expressions 
for the surface displacement c(z, t )  and total velocity components u(z, z,  t )  and w(x,  z ,  t ) .  
I n  his treatment, the mean volume flux turns out to be a function of the wave ampli- 
tude; however, as already indicated, we find it more convenient to require ab initio 
that  q is constant (to all orders). This slightly rearranges the 2-independent term8 in 
the expansion. The resulting formulae correct to second order for c(x, t ) ,  u(x,  z, t ) ,  
w(x, z, t )  and the pressure p ( x ,  z, t )  were given by Brink-Kjsr & Jonsson (1975) and 
Brink-Kjsr (1976). These are lengthy and will not be reproduced here. We adopt 
the convention that 6 is measured from the mean water surfitce, so that its expression 
contains no x-independent term. The wave amplitude a is therefore defined such that 

5 = a cos e + 0 ( ~ 2 ) ,  (2) 

where the O(a2) term is proportional to cos 28 and e(x ,  t )  is the phase function, with 
aO/at = o = absolute frequency a.nd - ae/ax = k = wavenumber = 2n/wavelength. 
The phase velocity c,, relative to the formal surface velocity is 

c, = c - us, (3) 

where c = w / k  is the absolute phase velocity. The dispersion relation, originally 
presented by Thompson (1949) and Biesel(1950), then takes the form 

c:, = ( g  - Qc,) k-1 tanh kh, (4) 

where g is the acceleration due to gravity. 
The accuracy of (4) for real flows has been tested in the following way. I n  his 

theoretical and experimental study of stationary waves on a current, Fredsrae (1974) 
calculated the dispersion relation for a cosine current velocity profile 

u = u, cos (1*2z/h), 

which was found to model flows over a rough bottom in the laboratory very well. 
His measurements (his figure 3 b )  are plotted in our figure 2, together with three 
theoretical dispersion relations for stationary waves, namely two with shear (the 



Wave action and set-down on shear 405 

FIGURE 2. Dimensionless wavenumber kh ws. Froude number 5 = q / ( g 1 W ’ 2 )  for stationary 
waves over a rough bed. 0,  measurements (Fredsoo 1974); ----, cosine current profile; -, 
linear current profile; -.- , irrotational flow. 

cosine and linear profiles, each having the same surface velocity Us) and one corres- 
ponding to irrotational flow. The linear-current curve is found from (3) and (4) with 
c = 0. It is seen that the linear-profile approximation gives a good representation of the 
rather pronounced influence of vorticity on the wavelength, for a given volume flux 
q and depth h. 

The absolute group velocity cg = aw/ak is found from (4) to be 

in which 
G = 2khIsinh2kh. 

In deep water G = 0 while in shallow water it approaches unity. 
The mean water surface (MWS) is horizontal when waves and currents characterized 

by constant parameters propagate without dissipation over a horizontal bed. Thus 
the mean water surface is an obvious choice for a reference level in this case, so we 
take the origin of co-ordinates to be a t  that level. The following definitions (exact) 
and expressions (correct to second order) for the radiation stress S, the mean wave 
energy density E and the total mean energy flux FMws all have the mean water surface 
as a reference level (see Brink-Kjaer & Jonsson 1975). 

which gives (on substitution from the detailed solutions cited above) 

S = tpga2( 1 + 36) + *pQ2u2h + &pQcTSa2kh tanh kh, (8) 

where a bar denotes averaging over the (constant) absolute period (or wavelength) 
and p is the density. 

E 3 s b h p g z d z - j o  -h pgzdz+$p/‘ -h ( u 2 + w 2 ) d z - l  Z P  j;, U2dZ, (9) 

(10) 
which gives 

E = $pga2 + &pQ2a2h + $pQcrsu2( - 1 + G + kh tanh kh). 
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Half the first term is the excess potential energy; the remainder comes (after mani- 
pulations involving use of the dispersion relation) from the kinetic energy. 

which gives (after some lengthy manipulations) 

f 0  

where U, = q/h = 4- &ah,  the average-over-depth velocity. Note that, in (7), (9) 
and ( I I ) ,  u is still the total horizontal particle velocity. As already mentioned, the 
expression for FMws is formally identical with the corresponding expression for 
irrotational flow ( U ( z )  = constant, i.e. 0 = 0) .  In the latter case, (8), (10) and (12) 
naturally reduce to well-known expressions; see Longuet-Higgins & Stewart ( 1960) 
and Jonsson et aE. (1971). In particular E is then the wave energy in the sense whose 
general meaning and physical interpretation were clarified by Bretherton & Garrett 
(1968). 

If we choose another reference level for the potential energy, the limits of integra- 
tion in (7) and (9) will be altered in such a way that the final expressions for S and E 
remain unchanged, i.e. S and E have been so defined as to be independent of the 
chosen reference level. They are also Galilean invariant. Neither statement is true for 
the total mean energy flux, however. For a reference level such that the mean water 
surface is a t  a height b above it, we find the total mean energy flux Fb to be 

5 = FMws + pghb urn. (13) 

The last term stems from the new reference level for the potential energy. This 
expression is immensely important for flow over a non-horizontal bed, since here 
b = b(x); see the next section. 

The reference frame Trn (in which the average-over-depth velocity is zero) obviously 
has a special significance in that the mean volume flux vanishes. In thatframe, further- 
more, the interaction term containing the radiation stress disappears from the 
expression for the energy flux, as can be seen below. In  a frame moving in the x direc- 
tion with an arbitrary velocity Q, the following expression emerges for the total mean 
energy flux, referred to the mean water surface: 

F&s = &pJ- ( U - & ) 3 d ~ + ( ~ g - & ) E + S ( U r n - & ) ,  
-h 

in which U ,  cg and U, are still velocities in the fixed frame. Thus only in Fm does the 
interaction term (the last term) disappear, since here Q = Urn. 

t Integrals over the mean depth of the current velocity squared and cubed appear in a number 
of expressions. They read 

For clarity and identification the integral definitions are retained in the above expressions, 
however. 
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3. A slowly varying bed 
We shall now study the spatial dependence of wave parameters for waves pro- 

pagating on a steady shear current over a slowly varying sea bed. Thus the dynamical 
problem for the waves is independent of time. We further restrict attention to solutions 
characterized by a single, constant absolute frequency w .  

When the mean flow is not horizontal, the mean water surface no longer forms a 
constant level. This is sketched in figure 3, where b = b(x) is the height of the mean 
water surface. (The ‘current-wave set-down’ b, - b, where b, is some constant reference 
height, involves effects due to the waves, to the Bernoulli effect in the basic cnrrent 
and to interactions.) In  this case there appears to be no natural reference level for the 
potential energy and the position of mean water surface, so the x axis is placed at  an 
arbitrary, but fixed horizontal level.? It is assumed that we have a slowly varying 
mean state such that locally the horizontal-bed expressions for dispersion, wave 
energy density, etc., are still valid. This essentially corresponds to the classical 
WKBJ approximation. Since dissipation will be neglected, the vorticity remains 
unchanged. This, combined with the assumption of a slowly varying depth, shows 
that the assumption that the vorticity is constant with depth at  just one position 
leads to a linear velocity profile with the same constant gradient in the vertical 
direction everywhere. So in addition to q and w ,  Cl can also be assumed constant. 

The motion of waves riding on a current over a non-horizontal bed is then char- 
acterized by the slowly varying quantities V,, k, a,  h and the position b of the mean 
water surface; see figure 3. These variables will depend on x ,  but not on time t since 
in this study we are concerned with steady waves and currents. 

The formal surface velocity V, and wavelength %/k: are known functions of the 
mean water depth; see (1) and (4). The wave amplitude a, the height of the mean 
water surface b and hence the mean water depth h can be found from equations ex- 
pressing conservation of total momentum and total energy. 

The mean total momentum flux M over a depth h (per unit wave front) equals the 
sum of the first and third terms on the right-hand side of (7),  so we find 

M = S +p U2dz + &pgh2. 1: h 

The horizontal component of the mean total pressure force acting on the fluid at  the 
bed per unit length in the x direction is 

Ph = pghdD/dx. (15) 

Here -dD/dx is the bed slope, since D = D(x)  is the (known) position of the bed; 

f This is in contrast to irrotational and time-periodic free-surface flow. For that case Jonsson 
et ul. (1971) define a horizontal level, the so-called mean energy level, which they show to be 
connected with the flow in a unique and natural way. If just one ‘streamline’ goes from infinite to 
finite depth, this level coincides with the mean water surface in deep water, where the current 
speed vanishes. It has also been shown by the senior author (Jonsson 1971) that, if one uses this 
mean energy level as a reference level for the potential energy, the equation for conservation of 
the total energy is exactly equivalent to that of wave-action conservation. Extending this to two 
horizontal dimensions (Jonsson 1978) shows that the wave m y  concept arises in a natural way, 
since here the total energy equation transforms to one of wave-action conservation between rays. 
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h 
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X 

FIGURE 3. Definition sketch. Slowly varying bed. 

see figure 3. The equation - dM/dx  + Ph = 0 of total momentum conservation there- 
fore takes the form 

since h = D + b from figure 3. 

is given by (13). From (12), this becomes 
The equation expressing total energy conservation is simply dFb/dx = 0, where Fb 

Using again the fact that h = D + b, it is readily seen that a and b can be found as 
functions of h instead of x. This is used in figures 4 and 5. 

The mean water surface height can be eliminated from (16) and (17) to give 

- ( C , E ) + S - =  d durn 0. 
dx dx 

(The need for the 'extra' term SdUJdx was pointed out by Longuet-Higgins & 
Stewart (1961) for the case of irrotational flow. Wave energy, as defined here, is not a 
conserved quantity.) The wave amplitude a is determined uniquely by (18), and this 
equation could be used directly for numerical computation. But it will be shown 
subsequently that in fact an analytical solution to (18) exists; this solution is not 
obvious by inspection or manipulation of (18), but can be arrived at  very efficiently 
by means of the heuristic argument which follows in the next two sections. The results 
will then be checked rigorously by direct substitution back into (18). 

4. An average Lagrangian 
Another method for dealing with a slowly varying wave train is to use an average 

Lagrangian; see Whitham (1974, p. 393 ff.). For rotational flow Luke (1967) proposed 
that the motion can be described by a Lagrangian density (per unit x distance) 
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where the velocity field u is described by Clebsch potentials $(x,x , t ) ,  a (x , z , t )  and 
P(x,  z, t ) ,  i.e. 

(The Clebsch representation (20) may not allow completely general motion if 4, a 
and ,8 are to be single valued (Bretherton 1970, Q B ) ,  but this need not deter us from 
using it for the present, heuristic purpose.) 

Assuming as before a solution periodic in the phase function 8(x, t ) ,  we can define 

u = VqJ+aVP. (20) 

and, by using the known structure ( 3  2) for periodic waves, express it as a function of 
w = aO/at, k = -aO/ax and a (and also of course g, p, h, Q and q). We then apply 
Whitham's principle that the variational derivatives of 9 with respect to a and 8 
should vanish, yielding respectively 

and 
Pa = 0 (22) 

(23) ay,/at - aPk/ax = 0, 

where the subscripts denote partial differentiation of the known functional form 

It' is not easy to calculate 9 directly from (19). Instead, we argue from the facts 
(Whitham 1974, p. 393) that (22) must be a form of the dispersion relation and that, 
correct to O(a2), 9 must be of the form 

-ItP(o, k, a) .  

9 = a2G(w, k; g, . . .) + g 0 ( g ,  . . .). (24) 

Here does not explicitly include a ,  w or k, and so will not contribute to (22) and 
(23); see also Whitham (1974, p. 393). I n  (24), G(w,  k) = 0 must be a form of the dis- 
persion relation. 

Suppose that the known form of the dispersion relation (4) is written as 

P(w, k; g, ...) = k&/tanh kh+ QcrS-g  = 0. (25) 

Recalling (22), it  then appears that (24) must take the form 

9 = a2f(w,k; 9, ...) P(w,k; 9, . . . ) + g 0 ( g ,  ...), (26) 

where f + 0. Now the O(a2) contribution to (19), which contains the factor g and 
arises directly from the linearized surface displacement (a), is easily seen to be - Bpga2. 
The simplest possibility is that this contribution corresponds to the last term in (25)) 
so that 

Then (25) and (27) indicate that 
f = t p .  (27) 

since from (3) we have c, = (w  - kU.)/k. 
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An immediate partial check on the correctness of (28) is that it reduces when 
52 = 0 to the well-known result for irrotational flow (see, for example, Whitham 
1974, p. 555). Equation (23) is Whitham’s adiabatic conservation relation for un- 
steady two-dimensional flow. Here we have made the self-consistent assumptions of 
a time-independent medium and steady waves, so (23) becomes 

dyk/dX = 0. (29) 

Since we have already calculated cg, pk is most easily found from the relation 

9k = 2u(au/ak).r=constant = %I ‘ g ,  (30) 

which holds when (22) and (24) hold. So, calculating Pu from (28) and introducing 
the group velocity through (5), we end up with 

It may be shown directly, without relying on (28), that (29) and (31) are equivalent to 
(18); the details are straightforward but tedious, and are omitted. This is taken as 
justifying the choice (27), and hence the tentative result (28). 

5. Wave-action conservation 
The expression (31) admits further simplification. From Bretherton & Garrett 

(1968) we know that for linear waves on an irrotational current Whitham’s adiabatic 
invariant 9: can be written in a form analogous to the classical adiabatic invariant, 
i.e. 

in which w, = w - kU is the intrinsic angular frequency, or the frequency in a frame of 
reference moving with the local mean flow velocity U .  Bretherton & Garrett called 
this form of Pu the ‘wave action’. Here the situation is more complex since w,. is a 
function of z ;  in fact, it is not altogether obvious that a physically well-defined fre- 
quency exists in terms of which 9,, can be written in a form analogous to (32). How- 
ever, if we introduce the aiigular frequency w,, relative to the special frame of reference 
Pm encountered previously, which moves with the average-over-depth velocity Urn, i.e. 

(33) 

Yu = E/wm. (34) 

(32) 9 u  = E / U r ,  

w,, = w - kU,, 

then the following simple relation emerges from (30) and (31): 

Here E is just the wave energy density (10) which follows from the definition (9). 
This also means that E can be written more concisely as 

(35) E = $pa2(% - Qcrs)  wrm/wrs ,  

where or, = w - kUs is the frequency relative to the surface velocity. 

This result could hardly have been guessed from the results in $0 2 and 3. 
Thus we have shown that for steady waves on a linear shear current E = 0 ~ ~ 9 ~ .  
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number IF = q/(g1i2 h39 equal to 1. 

The wave amplitude variation can now be found by introducing (34) and (30) 
into (29): 

in which the quantity in parentheses is the condensed version of (31). By analogy with 
the terminology introduced by Bretherton & Garrett, we adopt the term ‘wave 
action ’ for El@,.,,,, the form taken by Whitham’s invariant -E”, in this problem. So we 
say that (36) expresses ‘conservation of wave action’, correct to O(a2). 

For Q = 0 our result (36) reduces to the known result for irrotational flow, since our 
definition of E then coincides with that of Bretherton & Garrett. But it shows that an 
expression of exactly the same form as theirs applies to the more general case of a 
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shear flow with constant vorticity R, provided that we make an appropriate choice 
for the associated local frame of reference.? 

Figure 4 shows the variation of amplitude with water depth on a dimensionless plot. 
The integration constant in (36) is determined by the known (chosen) amplitude a, 
at some reference value of x where the water depth h = h, = 0-5L0 and by the known 
constant values of the discharge q, absolute frequency w and vorticity R. In the figure 
Lo = 2ng/w2 is the linear, irrotational, no-current deep-water wavelength; 

q* = 27rq/(L;w) 

is a dimensionless discharge. For each value of q* (except q* = 0 ) ,  two values of the 
dimensionless vorticity R * = 27rR/w have been investigated, namely the irrotational 
case R* = 0 (dashed curves) and the case where the current velocity at  the bed is 
zero a t  the reference depth h, (solid curves). The latter case corresponds to 

R* = 2q*/(hl/Lo)2. 

The two sets of curves determine the outer limits for a realistic problem. 

6. Position of mean water surface (‘set-down’) 
The order of accuracy of our expression (28) for the average Lagrangian is too low 

to allow a determination of the height b of the mean water surface (figure 3).  However, 
since (17) and (36) are both energy transport equations in conservation form, it is 
plausible that the quantities in parentheses in these equations are equal, apart from 
a constant factor and an arbitrary constant, and this suggests an expression for b .  
From similar considerations for irrotational flow (Jonsson 1971, 1978) it  can be 
guessed that the ‘missing’ factor in (36) is w ,  so 

gp s~hU3dz+c,E+SU~+pghbUm = -Ec,+constant, w 

*rm 
(37) 

which after some manipulation leads to 

- dz - - + - - - (2Um+Clh+2c,,khtanhkh)+constant, (38) 
1 0 U3 a2G a2Um 
q -h 29 4h Zhc,, 8gh 

I I1 I11 IV 
s b = - -  

where G is given by (6).  It has been verified directly that this expression for b 
does satisfy (16). It is correct to O(a2). The constant is determined from the initial 
conditions. 

The distance b is positive upwards; the ‘set-down’ could therefore be defined as 
b, - b, where b, is an initial value. With this interpretation (38)\cm be shown to lead 
to a number of well-known special results: 

(i) A pure current (a  = 0) leaves term I, which is the conventional hydraulic velocity 
head, or stagnation level. 

t A referee has pointed out that there is another choice of reference frame which is natural 
from a different viewpoint, namely the frame in which the surface velocity equals zero. Re- 
defining the wave energy as E’ by calculating the kinetic energy solely from the perturbation 
(first-order) particle velocities, he finds E’ = 4pa2(2g- nc,,). It is then seen from (34) and (35) 
that Su can also be written as E‘/wrs. However, in the authors’ opinion this formalism is less 
attractive, primarily because the physical interpretation of E’ is not obvious. 
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FIGURE 5 .  Dimensionless height ofmean water surface b/Lo vs. dimensionless depth h/Lo @,/Lo = 
0.5, a,/Lo = 0.01, b,/Lo = 0 ) .  - , R* = 2q*/(h,/L0)2; ---- , a* = 0 (irrotational flow). For 
q* positive, curves stop as in figure 4. For q* = 0, the curve stops a t  a/h  = 0.4. 

(ii) Pure waves in irrotational flow (Urn = 0, Q = 0) leave term 11, which is the 
conventional wave set-down (Longuet-Higgins & Stewart 1962; Lundgren 1963; 
Phillips 1966, equation 3.7.6f). 

(iii) Waves on a current in irrotational flow (Q = 0) leave terms I, I1 and 111, which 
constitute the conventional current wave set-down (Jonsson et al. 1971). 

Note that term I11 is a current-wave interaction term in the sense that it dis- 
appears in the two limits of vanishing waves and vanishing mean flow. So it cannot be 
easily checked. A rather simple way to find it, though, was presented by Jonsson 
(1971, 1978); see also Jonsson et al. (1971, equation (4.8)). Term IV is a vorticity- 
wave interaction term in the sense that it disappears for vanishing vorticity and 
vanishing waves. Generally it does not disappear for vanishing depth-averaged mean 
flow. 

The variation of the mean water surface is shown in figure 5 (for positive currents 
only). Lo and q* are as defined in connexion with figure 4 and the two sets of curves 
correspond to those in the same figure. In contrast to the relative amplitude, the 
relative set-down is a function of the initial amplitude, so a value of a,/L, must be 
specified as well. As would be expected, the effect of vorticity on the set-down is less 
dramatic than that on the amplitude (figure 4). 

7. Conclusion 
Periodic surface gravity waves propagating on a linear shear current over a sea 

bed of gentle slope in a time-independent and non-dissipative medium have been 
investigated for two-dimensional flow. The analysis was carried through by a com- 
bination of two methods : a classical perturbation technique leading to conservation 
equations for momentum and total energy, and a heuristic method using an incomplete 
average Lagrangian derived from the dispersion relation. 

We have shown that, in the particular case of a linear current Whitham’s adiabatic 

t It is not obvious that Phillips’ more complicated expression equals term 11; noting that his 
d(coth & / d ~  is - g/ [wc  sinh2 kh( 1 + G)] and that his F is *Ec( 1 + G) leads to this result. 



414 I .  G .  Jonsson, 0. Brink-Kjm and G .  P. Thomas 

invariant can be equated to the ratio between a wave energy density and an intrinsic 
angular frequency w,, which arises in a natural way in our problem. The correspond- 
ing local frame ofreference Fm is that in which the average-over-depth current velocity 
vanishes. This is a non-trivial extension of the analogous result for irrotational flow; 
it depends crucially on the assumption that the second-order contribution to the 
Eulerian-mean flow is independent of depth, below the wave trough level. It is not 
known a t  present whether there is a comparably simple general recipe for singling 
out such an intrinsic frequency in all kinds of wave problems. 

An analytical expression for the height of the mean water surface was found by the 
heuristic device of comparing the conservation equations for total energy and wave 
action. It was verified by substitution back into the basic equations of $9 2 and 3. 

Graphs have been presented which illustrate the effect of vorticity on the wave- 
length, amplitude and set-down. 

The authors wish to thank Dr M. E. McIntyre for valuable help with aspects of the 
presentation. The present paper is a synthesis of originally independent research 
carried out at  the Technical University of Denmark and the University of Bristol. 
The senior author acknowledges Otto Mransted's Foundation, Copenhagen, for 
supporting a visit to Bristol, which resulted in this joint study. 

Appendix. Discussion of the mean current profile 
The mean volume flux q is by definition connected with the formal current through 

(1); see figure 1. However, between the trough and crest level there is a wave-induced 
net transport of fluid in the direction of wave propagation. This transport is balanced 
by a constant negative term in the expression for the total horizontal particle 
velocity u;  see Brink-Kjaer (1976). (This results from our convention of prescribing q in 
advance.) Below the wave trough level the Eulerian-mean particle velocity is, correct 
to second order, 

Above the wave trough level (u) varies continuously with not more than one maxi- 
mum (depending on the direction and strength of the current) and vanishes a t  the 
wave crest level (see figure 6 and Brink-Kjaer 1976). It is dominated by the zero-order 
contribution associated with U,; the next contribution is O(a).  

We have, by definition, 

p = SChud.z = 1" - h  (u)dz = / i h  U(z)dz .  (A 2) 

Figure 6 illustrates the difference between the Eulerian-mean current profile as 
defined here and the formal current profile. In the figure the current flows in the direc- 
tion of wave travel. The average-over-depth velocity Urn is naturaliy the same for the 
two profiles in the figure, as is SZ. 

In  spite of this the definitions of X and E [see (7) and (9)] use the formal current 
profile, although it leads to expressions [see (8) and (lo)] which are not bounded for 
increasing values of h, other parameters being constant. However, the simple results 
for FMWs and wave-action conservation [see (12) and (36)] constitute our reasons for 
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FIGURE 6. Mean velocity profiles for a positive current (schematic). - , real (Eulerian) 
current profile; ----, formal current profile; I, wave crest level; 11, wave trough level. 

retaining these definitions. It should further be noted that, by virtue of (35), the last 
term in (A 1 )  can be written as - E/(phc,,), where c,, = c - Urn, the phase velocity 
in the frame Fm. This expression is formally the same as for irrotational flow. (Pursuing 
the philosophy presented in the footnote in $ 5 ,  the last term can alternatively be 
written as - E’/(phc,).) 
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